

Blob following with
obstacle avoidance

Presentation by Sharice Handa
for Professor Francesco Bullo

June 12, 2009

Goals (Fall 08)
 Learn C++ Programming Language
 Learn Player/Stage
 Write code to use camera and blob finder to

follow a blob

Blob Follow: Finding change in distance

 Blob moves closer or farther
away
 Camera shows:

 Blob at desired distance
 Blobfinder driver gives ox and dx values

 Blob has moved farther away
 (Blob in camera becomes smaller)

 Blob has moved closer
 (Blob in camera becomes larger)

Blob Follow: Finding change in distance

 desDistance is the user specified
distance which the robot should stay
away from the blob.

 realSize is the user defined real size of
the blob.

 ResCam is the resolution of the camera
(number of pixels)

 (ox-dx) is the diameter of the blob from
blobfinder data of camera.

 fov is the field of view of the camera
(angle)

double distanceDifference=-desDistance+((realSize*resCam/2)/(dx-ox)/tan(fov/2));

tan(fov/2) = Radius of blob / (distanceDifference + desDistance)

Blob Follow: Finding change in distance

 If calculated distanceDifference is less than .
1m, robot dose not move.

 If distanceDifference is more than .1m, robot
drives to that distanceDiference.

 //change of distance
 if (abs(distanceDifference)<=.1)
 {
 distToGoal1=0;
 }

 else if (abs(distanceDifference)>=.1)
 {
 distToGoal1=distanceDifference;
 }

Blob Follow: Finding change in angle

 Blob moves to the left or right
 Camera shows:

 Blob is centered

 Blob has moved to the left
 (Blob in camera offset to left)

 Blob has moved to the right
 (Blob in camera offset to right)

Blob Follow: Finding change in angle

 ResCam is the resolution of the camera (number of pixels)
 midWidth is (ox-dx)/2 is the middle of the blob (widthwise)
 fov is the field of view of the camera (angle)

 fov/resCam is the number of degrees per pixel

double angleDifference=(resCam/2-midWidth)*fov/resCam;
 //change of angle
 desiredHeading1=angleDifference;

Blob Follow: Demo Video
combined change of distance and angle

Play BlobFollowDemo Video

Notice:
•The red robot, follows the blue blob.
•A visual representation of the robot’s camera is present.
•The robot keeps a user defined distance away from the blob.
•The robot tries to keep the blob at the center of it’s view.
•When the robot loses sight of the blob continues at last heading and angle.
•No obstacle avoidance.

Blob Follow: combined change of
distance and angle

 Problems thus far:
 If robot loses sight of the blob it will continue at last sighted

angle and distance until blob is found again. Potentially
crashing into walls.

 Robot cannot follow blob around corners. Hits corner.
 Solution:

 Add code to make robot stop
 movement if loses sight of blob.

 Integrate laser proxy data to help robot navigate around
corners and obstacles while still following blob.

 if (ox==0 && dx==0)
 {
 cout<<"No data"<<endl;
 desiredHeading=0;
 pp.SetSpeed(0,0);
 continue;
 }

Goals (Winter 08)
 Integrate use of laser data to avoid obstacles

while following blob

Blob Follow: obstacle avoidance

 Create Boolean.
 loops through

laser data points.
 Boolean is true if

the path from the
robot to its desired
new spot is clear .

 Boolean is false if
the path is not
clear.

Blob Follow: obstacle avoidance

bool SafePathToGoal=true;
double angCutoff=atan2(R+buffer,distanceToBlob);
 // loop through laser distances
 for(int j = 0; j < count; j++)
 {
 double angleJ=angRes*(j-count/2)-angleDifference;
 double drectJ=0;
 }

if (fabs(angleJ)<angCutoff)
 {
 drectJ=fabs(distanceToBlob/cos(angleJ));
 }
else if (fabs(angleJ) < M_PI/2.0)
 {
 drectJ=fabs((R+buffer)/sin(angleJ));
 }

Blob Follow: obstacle avoidance

 Loop through laser data
 stores the data point which is: closest to the centerline

between the robot to the blob and is obstructing path.

 if (lp[j] < drectJ)
 {
 SafePathToGoal=false;
 if (fabs(angleJ)<fabs(angleTrouble))
 {
 trouble=j;
 angleTrouble=angleJ;
 distTrouble=lp[j];
 }
 }

Blob Follow: obstacle avoidance

 If there is a safe path to the goalGo

 if (SafePathToGoal)
 {
 cout<<"Safe Path"<<endl;
 desiredHeading=desiredHeading1;
 distToGoal=distToGoal1;
 }

Blob Follow: obstacle avoidance

 To navigate around obstacle point:

Blob Follow: obstacle avoidance

else
 {
 if (distTrouble<(R+buffer))
 {
 angleSafe=(M_PI/2)-atan(distTrouble/(R+buffer));
 }
 else
 {
 angleSafe=asin((R+buffer)/distTrouble);
 }

 if (angleTrouble <= 0)
 {
 desiredHeading = angleTrouble+angleSafe;
 distToGoal=distToGoal1;
 }
 else
 {
 desiredHeading = angleTrouble-angleSafe;
 distToGoal=distToGoal1;
 }
}

Blob Follow: Demo Video
blob following with obstacle avoidance

Play BlobFollowDemo2 Video

•Robot moves forward, backwards, left and right with blob.
•Maneuvers around corners to follow blob.
•When loses sight of blob (no cam data) stops completely
•Can follow the blob along a wall without crashing.

Goals (Spring 09)
 Get more accurate camera data.
 Robot go to last seen location of blob if loses

sight of the blob.
 Fix bug in program where sometimes robot

will go in opposite direction of blob.

Blob Follow: improving camera data.

 Instead of using ox and dx values (from x-
axis) use oy and dy (from y-axis).

 When only half of the blob is visible, y-axis
values of the blob more accurately
determines the distance from robot to blob.

Blob Follow: adding memory of last location of blob.

 Initialize the position proxy of the robot.
 At end of defining distanceDifference and

angleDifference, store values yGoal and
xGoal for later use.

 xGoal and yGoal are the x and y positions of
where the blob was last sighted.

yGoal = (distanceDifference + desDistance) * sin(theta + angleDifference)+ yPos;

xGoal = (distanceDifference + desDistance) * cos(theta+angleDifference) + xPos;

Blob Follow: adding memory of last location of blob.

 Instead of telling robot to stop when it does
not have camera data, used stored xGoal,
yGoal, and position proxy data to determine
where the robot wishes to travel.

 When gets to point it last saw the blob, robot
circles, waiting until it can see the blob (has
camera data) again.

distanceToBlob = sqrt(pow(xGoal - xPos, 2) + pow(yGoal - yPos, 2));
angleDifference = normalize(atan2(yGoal - yPos, xGoal – xPos) – theta);

Blob Follow: fixing Boolean.

 Problem:
 Blob it self was seen as an obstacle.

 Why?
 The camera data still had errors.
 To the camera the blob appeared smaller, so

the estimated distanceToBlob was larger.
 Thus the blob was within the checking

triangles and the laser data read the blob as
an obstacle.

 Solution:
 Instead of checking weather triangles (1) and

(2) are clear of obstacles, only check (2).
Parts highlighted in green.

 If there is an obstacle (in yellow), robot will
use the closest obstacle point as it’s point of
navigating around (in red).

 Same trig formulas as before are used to
navigate around obstacle point.

Blob Follow: fixing Boolean.

 Only checks
triangle (2)

 Stores smallest
laser distance in
triangle (2) and
that point’s angle.

 Uses this to
determine safe
deflection.
(angleSafe)

for(int j = 0; j < count; j++)
 {
 double angleJ=angRes*(j-count/2);
 double drectJ=0;
 if (fabs(angleJ)>angCutoff && fabs(angleJ) < M_PI/2.0)
 {
 drectJ=fabs((R+buffer)/sin(angleJ));
 if (lp[j]<distTrouble && lp[j] < drectJ)
 {
 SafePathToGoal=false;
 distTrouble=lp[j];
 angleTrouble=angleJ;
 trouble=j;
 }
 }
 }

Blob Follow: fixing Boolean.

 Using the closest obstacle point
 In old program the robot would

chose point closest to centerline to
use as obstacle point.
 switch between light and dark pink

points being the obstacle point.
 Would crash into wall.

 In new program this is no longer a
problem.

Blob Follow: Demo Video
Basic operations

 See Blob_Follow_Final1
 Basic operations shown, forward, backward, left

and right still work.

Blob Follow: Demo Video
Around a corner

 See Blob_Follow_Final2
 Robot follows blob around a corner.

Blob Follow: Demo Video
Avoiding a constant wall

 See Blob_Follow_Final3
 Robot follows blob while avoiding wall.

Blob Follow: Demo Video
Robot continues to last known location of blob

 See Blob_Follow_Final4
 The robot follows the blob around a corner.
 Half-way through, the simulation is paused and

the blob is moved out of view.
 The robot continues to the last known location of

the blob and turns in circles awaiting new camera
data.

Blob Follow: Demo Video
Blob will continue to seek

 See Blob_Follow_Final5
 Robot follows blob.
 Half-way through, the simulation is paused and

the blob is moved out of view.
 The robot continues to the last known location of

the blob and turns in circles awaiting new camera
data.

 When robot is moved, it finds it’s way back to the
location it last saw the blob with obstacle
avoidance.

Challenges
 Debugging program.

 Used Graphics2DProxy
 predict where robot thought blob was.

 Determined that camera data was not accurate, over
estimated where blob was.

 predict where robot thought obstacle was.
 Determining relative frames of reference.

 Robot frame vs. target frame vs. global frame.

Future Goals
 Make robot less jittery when going around

corners
 Implement on hardware.

	Blob following with obstacle avoidance
	Goals (Fall 08)
	Blob Follow: Finding change in distance
	Slide 4
	Slide 5
	Blob Follow: Finding change in angle
	Slide 7
	Blob Follow: Demo Video combined change of distance and angle
	Blob Follow: combined change of distance and angle
	Goals (Winter 08)
	Blob Follow: obstacle avoidance
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Blob Follow: Demo Video blob following with obstacle avoidance
	Goals (Spring 09)
	Blob Follow: improving camera data.
	Blob Follow: adding memory of last location of blob.
	Blob Follow: adding memory of last location of blob.
	Blob Follow: fixing Boolean.
	Slide 23
	Slide 24
	Blob Follow: Demo Video Basic operations
	Blob Follow: Demo Video Around a corner
	Blob Follow: Demo Video Avoiding a constant wall
	Blob Follow: Demo Video Robot continues to last known location of blob
	Blob Follow: Demo Video Blob will continue to seek
	Challenges
	Future Goals

