Blob following with
obstacle avoidance

Presentation by Sharice Handa
for Professor Francesco Bullo
June 12, 2009

Goals (Fall 08)

® | earn C++ Programming Language
® | earn Player/Stage

® \\Vrite code to use camera and blob finder to
follow a blob

Blob Follow: Finding change in distance

® Blob moves closer or farther
away

Camera shows:

Blob at desired distance
" Blobfinder driver gives ox and dx values

Blob has moved farther away ®

" (Blob in camera becomes smaller)

Blob has moved closer
* (Blob in camera becomes larger)

(Y X
o000
CY)
®
Blob Follow: Finding change in distance
double distanceDifference=-desDistance+((realSize*resCam/2)/(dx-ox)/tan(fov/2));
(realSize® M.} :
(o) ® desDistance is the user specified
E double distanceDifference = " . -desDistance E dIStanCe WhICh the robot Should Stay
eeeeeeeeeeeeeeseseseneeneeeeeeeee i @way from the blob.
Radins of blobe ® realSize is the user defined real size of
E (realSize*res Cam W 2idx-ox)) the blOb
ﬁ ® ResCam is the resolution of the camera
o (number of pixels)
T g ® (ox-dx) is the diameter of the blob from
% blobfinder data of camera.
a ¢ fov is the field of view of the camera
°) g (angle)
AV

tan(fov/2) = Radius of blob / (distanceDifference + desDistance)

Blob Follow: Finding change in distance

/lchange of distance
if (abs(distanceDifference)<=.1)

{
distToGoal1=0;

}

else if (abs(distanceDifference)>=.1)

{

distToGoal1=distanceDifference;

}

® |f calculated distanceDifference is less than .
1m, robot dose not move.

® |f distanceDifference is more than .1m, robot
drives to that distanceDiference.

Blob Follow: Finding change in angle

® Blob moves to the left or right

Camera shows:
Blob is centered

Blob has moved to the left
* (Blob in camera offset to left)

Blob has moved to the right
* (Blob in camera offset to right)

(Y Y
e00
o0
O
Blob Follow: Finding change in angle
double angleDifference=(resCam/2-midWidth)*fov/resCam,;
//change of angle
desiredHeading1=angleDifference;
New center of blob
) i iesseeerrememmmmssseeersoemmmmess——.rrenenena.as——.renen——.
Eclouhle angleDifference = %‘mn - midWidth) = rei?;m

Old center of blob
angleDifference

® ResCam is the resolution of the camera (number of pixels)
* midWidth is (ox-dx)/2 is the middle of the blob (widthwise)

® fov is the field of view of the camera (angle)
fov/resCam is the number of degrees per pixel

Blob Follow: Demo Video

combined change of distance and angle

Play BlobFollowDemo Video

Notice:

*The red robot, follows the blue blob.

*A visual representation of the robot’s camera is present.

*The robot keeps a user defined distance away from the blob.

*The robot tries to keep the blob at the center of it’s view.

*‘When the robot loses sight of the blob continues at last heading and angle.
*No obstacle avoidance.

Blob Follow: combined change of

distance and angle

® Problems thus far:

If robot loses sight of the blob it will continue at last sighted
angle and distance until blob is found again. Potentially
crashing into walls.

Robot cannot follow blob around corners. Hits corner.

o ' .
Solution: if (ox==0 && dx==0)
Add code to make robot stop {

movement if loses sight of blob. cout<<"No data"<<endl,

desiredHeading=0;
pp.SetSpeed(0,0);
continue;

}

Integrate laser proxy data to help robot navigate around
corners and obstacles while still following blob.

Goals (Winter 08)

® |ntegrate use of laser data to avoid obstacles
while following blob

Blob Follow: obstacle avoidance

P ® Create Boolean.
Boolean

Iz there a safe path ® IOOpS th rOugh
to the goal point? .
laser data points.

(zet Boolean true) Ves / Mo (set Boolean talse) . .
L ® Boolean is true if

Uae distance and angle S.tc::re data of point “_rhi':h the path from the
of camera data to go 18 clozest to the desired rObO t tO | tS des| re d
to goal point heading I;angle} and 1= .
obstructing the path new spot is clear .
\l/ ® Boolean is false if

Mawvigate arcund point

keeping some buffer distance the path |S nOt
Clear.

Blob Follow: obstacle avoidance

Bt buffor bool SafePathToGoal=true;
| | double angCutoff=atan2(R+buffer,distanceToBlob);
. // loop through laser distances
for(intj=0;j < count; j++)
{
3 double angleJ=angRes*(j-count/2)-angleDifference;
5 double drectd=0;
g }
o]
” if (fabs(angledJ)<angCutoff)
angCutoff { .
| . drectJ=fabs(distanceToBlob/cos(angleJ));

% |
else if (fabs(angled) < M_PI/2.0)
{

drectJ=fabs((R+buffer)/sin(angleJ));
}

Blob Follow: obstacle avoidance

if (Ip[j] < drectJ)

(Boolean)

Is there a safe path {

to the zoal point? SafePathToGoal=false;
(set Boolean true) Iv;/ Mo (set Boolean taise) if (fabs(angleJ)<fabs(angleTrouble))
. Store data of point which { .
ch;fe i;i?;i:;dt;;ﬂe 13 clo;est to the desire_d trou bIeZJ ’
to goal point heading (angle) and 15 _ .
obstruct_ing the path ang|eTI’OUb|e—ang|eJ,
4 distTrouble=Ip][j];

Nawvigate arcund point
keeping some buffer distance

}

® | oop through laser data

stores the data point which is: closest to the centerline
between the robot to the blob and is obstructing path.

Blob Follow: obstacle avoidance

(Boolean)

I there a safe nath

o fhe goa, pomnt? if (SafePathToGoal)
(et Boolean true) Ves / Mo (zet Boolean talse) {
v

cout<<"Safe Path"<<end!I;

Use distance and angle Stors data of point which

of camera data to go ts closest fo the desired desiredHeading=desiredHeading1;
to goal point heading (angle) and is) .
obstructing the path distToGoal=distToGoal1;

J)

MNavigate around point
keeping some buffer distance

® |f there is a safe path to the goal=»Go

Blob Follow: obstacle avoidance

(Boolean)

Is there a zafe path
to the goal point?

(zet Boolean true) Ves / No (zet Boolean talse)

Use distance and angle S_tore data of pont Wthh
13 closest to the desired
of camera data to go

to goal point heading (angle) and iz
chetructing the path

J

Mavigate around point
keeping some buffer distance

® To navigate around obstacle point:

Blob Follow: obstacle avoidance

distTr onble<R+buffer

———
O

if (distTrouble<(R+buffer))

{
angleSafe=(M_PI/2)-atan(distTrouble/(R+buffer));

Etbuftfer }
O 4 else
{

distTrouble angletafe angleSafe=asin((R+buffer)/distTrouble);

}

Trouble=ER+buffer
| Refbuffer if (angleTrouble <= 0)

! . | {

desiredHeading = angleTrouble+angleSafe;

distToGoal=distToGoal1;
<: }
Etbuffer else

{

desiredHeading = angleTrouble-angleSafe;
distToGoal=distToGoal1;

distTrouble

O

anglefafe }
|

Blob Follow: Demo Video

blob following with obstacle avoidance

Play BlobFollowDemo2 Video

*‘Robot moves forward, backwards, left and right with blob.
*Maneuvers around corners to follow blob.

*‘\When loses sight of blob (no cam data) stops completely
*Can follow the blob along a wall without crashing.

Goals (Spring 09)

® Get more accurate camera data.

® Robot go to last seen location of blob if loses
sight of the blob.

® Fix bug in program where sometimes robot
will go in opposite direction of blob.

BIOb FOI IOW: improving camera data.

. d}, _'
oV

| |

| |

0 [
ox dx

® |Instead of using ox and dx values (from x-
axis) use oy and dy (from y-axis).

®* \When only half of the blob is visible, y-axis
values of the blob more accurately
determines the distance from robot to blob.

B I Ob FOI IOW: adding memory of last location of blob.

® |nitialize the position proxy of the robot.

® At end of defining distanceDifference and
angleDifference, store values yGoal and
xGoal for later use.

® xGoal and yGoal are the x and y positions of
where the blob was last sighted.

B I O b FOI IOW: adding memory of last location of blob.

® |nstead of telling robot to stop when it does
not have camera data, used stored xGoal,
yGoal, and position proxy data to determine
where the robot wishes to travel.

® \When gets to point it last saw the blob, robot
circles, waiting until it can see the blob (has
camera data) again.

BIOb FO"OW: fixing Boolean.

Ettuffer

(L)

(2)

angCutoff

e
&

qoId ©f 30UESTP

&

Problem:

Blob it self was seen as an obstacle.

Why?

The camera data still had errors.

To the camera the blob appeared smaller, so
the estimated distanceToBlob was larger.

Thus the blob was within the checking
triangles and the laser data read the blob as
an obstacle.

Solution:

Instead of checking weather triangles (1) and
(2) are clear of obstacles, only check (2).
Parts highlighted in green.

If there is an obstacle (in yellow), robot will
use the closest obstacle point as it's point of
navigating around (in red).

Same trig formulas as before are used to
navigate around obstacle point.

000
000
o0
[
B I O b F O I I OW: fixing Boolean.
for(intj = 0;j < count; j++) ¢ Only CheCkS
{ triangle (2)
double angleJ=angRes*(j-count/2);
double drectJ=0; ® StoreS Sma”eSt
i{f (fabs(angled)>angCutoff && fabs(angleJ) < M_P1/2.0) Iaser distance in
drectJ=fabs((R+buffer)/sin(angleJ)); triangle (2) and
i{f (Ip[jl<distTrouble && Ip[j] < drectJ) that pOInt’S angle
SaPeTomane -
?nglﬁTrqublegaﬁgleJ; ¢ USGS th IS tO
rouble=j; .
’ determine safe
deflection.

(angleSafe)

BIOb FO"OW: fixing Boolean.

® Using the closest obstacle point

In old program the robot would
chose point closest to centerline to
use as obstacle point.

switch between light and dark pink
points being the obstacle point.

Would crash into wall.

In new program this is no longer a
problem.

Blob Follow: Demo Video

Basic operations

® See Blob Follow Final1

® Basic operations shown, forward, backward, left
and right still work.

Blob Follow: Demo Video e2st

[X |
Around a corner

® See Blob Follow Final2
® Robot follows blob around a corner.

Blob Follow: Demo Video

Avoiding a constant wall

® See Blob Follow Final3
®* Robot follows blob while avoiding wall.

Blob Follow: Demo Video

Robot continues to last known location of blob

® See Blob Follow Finald

The robot follows the blob around a corner.
Half-way through, the simulation is paused and

t

t

he blob is moved out of view.

"he robot continues to the last known location of
ne blob and turns in circles awaiting new camera

data.

Blob Follow: Demo Video

Blob will continue to seek

® See Blob Follow Final5
Robot follows blob.

Half-way through, the simulation is paused and
the blob is moved out of view.

The robot continues to the last known location of
the blob and turns in circles awaiting new camera
data.

When robot is moved, it finds it's way back to the
location it last saw the blob with obstacle
avoidance.

Challenges

® Debugging program.
Used Graphics2DProxy

predict where robot thought blob was.

Determined that camera data was not accurate, over
estimated where blob was.

predict where robot thought obstacle was.

® Determining relative frames of reference.
Robot frame vs. target frame vs. global frame.

® L/
v -

3 3 Gobal Frame

Target Frame
- X

ERobot Frame

Future Goals

® Make robot less jittery when going around
corners

® |[mplement on hardware.

	Blob following with obstacle avoidance
	Goals (Fall 08)
	Blob Follow: Finding change in distance
	Slide 4
	Slide 5
	Blob Follow: Finding change in angle
	Slide 7
	Blob Follow: Demo Video combined change of distance and angle
	Blob Follow: combined change of distance and angle
	Goals (Winter 08)
	Blob Follow: obstacle avoidance
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Blob Follow: Demo Video blob following with obstacle avoidance
	Goals (Spring 09)
	Blob Follow: improving camera data.
	Blob Follow: adding memory of last location of blob.
	Blob Follow: adding memory of last location of blob.
	Blob Follow: fixing Boolean.
	Slide 23
	Slide 24
	Blob Follow: Demo Video Basic operations
	Blob Follow: Demo Video Around a corner
	Blob Follow: Demo Video Avoiding a constant wall
	Blob Follow: Demo Video Robot continues to last known location of blob
	Blob Follow: Demo Video Blob will continue to seek
	Challenges
	Future Goals

